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ABSTRACT
A Bayesian framework for parameter inference in non-stationary, nonlinear, stochastic, dynamical systems is
introduced. It is applied to decode time variation of control parameters from time-series data modelling phys-
iological signals. In this context a system of FitzHugh-Nagumo (FHN) oscillators is considered, for which
synthetically generated signals are mixed via a measurement matrix. For each oscillator only one of the dynam-
ical variables is assumed to be measured, while another variable remains hidden (unobservable). The control
parameter for each FHN oscillator is varying in time. It is shown that the proposed approach allows one: (i) to
reconstruct both unmeasured (hidden) variables of the FHN oscillators and the model parameters, (ii) to detect
stepwise changes of control parameters for each oscillator, and (iii) to follow a continuous evolution of the control
parameters in the quasi-adiabatic limit.

Keywords: Nonlinear time-series analysis, Bayesian inference, varying parameters, FitzHugh-Nagumo, mea-
surement matrix.

1. INTRODUCTION
The ubiquity of noisy nonlinear systems in nature has led to the use of stochastic nonlinear dynamical models
for observed phenomena across many scientific disciplines, including the modelling of biological nonstationary
signals. Important “hidden” features of a model such as coupling coefficients between the dynamical degrees
of freedom can be very difficult to extract due to the presence of intrinsic dynamical noise and the intricate
interplay between noise and nonlinearity.

The problem becomes even more challenging if we want to detect and characterize the nonstationarity of the
system following the evolution of system’s parameters. Fast (almost real-time) detection of parameters’ evolution
is essential in the identification, diagnostic, and prognostic of the time evolution of complex dynamical systems.
This is especially true when dealing with biological signals.

In our earlier work1 an efficient technique of Bayesian inference of nonlinear noise-driven dynamical models
that guarantees optimum compensation of dynamical noise-induced errors for continuous systems and avoids
extensive numerical optimization was introduced. In the present paper we extend earlier results and introduce
a Bayesian framework for inferring parameters of continuous non-stationary systems, and in particular for the
long standing problem of reconstruction of parameters for neuronal systems.

Neuronal signals are a good example, for which the Bayesian inference is especially advantageous: often
the system’s dynamical details are known only approximately. There is a strong influence from internal noise
but, most of all, the coefficients and coupling terms are in general not constant, and so a fast and “elastic in
adaptation” technique is needed to detect changes of the system.

In this context a system of FitzHugh-Nagumo (FHN) oscillators is considered, for which synthetically gen-
erated signals are mixed via a measurement matrix. For each oscillator only one of the dynamical variables
is assumed to be measured, while another variable remains hidden (unobservable). The control parameter for
each FHN oscillator is varying in time. The goal is to decode a control parameter for each signal. Note that
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the system of FitzHugh-Nagumo oscillators is one of the most useful models2–4 in explaining a lot of different
biological dynamics. It can present spontaneous oscillatory firing patterns5 and it can be used to characterize
electrical signal propagation in nerve fibres6 and in cardiac tissue.7–9

The paper is organized as follows. First, we describe how the Bayesian algorithm is applied to a single os-
cillator, and then we discuss a multi-dimensional system, where every signal coming from a FitzHugh-Nagumo
oscillator is linearly mixed with the other ones through a specific mixing measurement matrix. We then provide
practical demonstration of how model parameters and noise coefficients can be inferred in this situation, and
consider the advantages and limitation of this present technique.

2. BACKGROUND ON BAYESIAN INFERENCE
Let us suppose we have to analyse a signal coming from an L-dimensional system of the form

ẋ = f(x|c) + ξ(t)

〈ξ(t)〉 = 0, 〈ξ(t) ξT (t′)〉 = D̂ δ(t− t′)
(1)

where c is a vector of unknown parameters and ξ(t) is a white Gaussian additive dynamical noise characterized by
diffusion matrix D̂. The task is to decode the optimal set of parameters M = {c, D̂}, given a set of measurement
X .

A priori knowledge of Mis summarized in the so-called prior probability density function (PDF) ppr(M).
Then the time-series X is acquired from the experimental set up, and the new gained information is used to
compute the a posteriori PDF of the model parameters, namely ppost(M|X ). The relationship between the two
distribution ppr(M) and ppost(M|X ) is given by the Bayes’ theorem:

ppost(M|X ) =
"(X|M) ppr(M)∫

"(X|M) ppr(M) dM
. (2)

The PDF "(X|M) (also called likelihood of X ) is the conditional probability of the occurrence of measurements
X when the set of parameters M is given.

The procedure can be applied iteratively for a sequence of data blocks {X1,X2, . . . }: the posterior for one
block is the the prior for the next block:

ppr(Mi+1) = ppost(Mi|Xi)

The densities ppost for each Mi are a sequence of functions that become sharper and sharper functions that peak
at the solution of the inference problem.

One of the main goals of dynamical inference is to find the correct analytical expression for the likelihood
and to introduce an efficient algorithm for optimization of the posterior distribution with respect to the model
parameters. Both problems are very non trivial in the context of nonlinear dynamical stochastic systems. In the
earlier research the correct analytical form for "(X|M) could not be found and optimization was mainly relying
on extensive numerical methods.

In a recent work1 we have introduced (and verified in application to the dynamical inference of cardio-vascular
system?) analytical solution for a wide class of non-linear stochastic systems which does not require extensive
numerical calculations and provides an optimal compensation for the noise-induced errors. One of the keys of
the novel approach is to write the expression for the likelihood in the form of a path integral over the random
trajectories of the system:

"(X|M) =
∫ x(tf)

x(ti)
FM[x(t)]Dx(t), (3)

A very important step in calculation of this integral is to write the correct form of the Jacobian of transformation
from stochastic to dynamical variables. It is the analytical factor related to this Jacobian of transformation that
guarantees the optimal compensation of the noise-induced errors by providing a leading order contribution to
the analytical expression for the posterior PDF. Another key is to introduce a convenient parameterizations of
the vector field. We now briefly summarize the results of these calculations.



2.1 Parameterization of the vector field and likelihood construction
We assume that the data block of measurement X ≡ {x(tk), k = 1, . . . , K} comes from an uniform time grid:

xk ≡ x(tk) (4)
tk = t0 + k h, k = 1, . . . , K. (5)

h =
tK − t0

K
(6)

With this discretization, the system in (1) might be approximated as:

ẋk+1 = xk + h f(x∗k|c) + ξk

〈ξk〉 = 0, 〈ξs ξq
T 〉 = D̂ δs q

(7)

where use of the following definition was made:

x∗k =
xk+1 − xk

2

and the vector ξk =
∫ tk+1

tk
ξ(s)ds. on the uniform time lattice the discretized version of the logarithm of the

likelihood takes the form:

log "(X|M) = −K

2
ln det D̂− h

2

K−1∑

k=0

[
tr

[
∂f(x∗k|c)

∂x

]
+ (ẋk − f(x∗k|c))

T D̂−1 (ẋk − f(x∗k|c))
]

+ I. (8)

Here we have introduced the “velocity” ẋk

ẋk ≡ h−1(xk+1 − xk).

and I is a constant factor which depends on neither M nor X . It should be noted that, in general, the likelihood
in eq.(8) is such that the integral ∫

"(X|M) p(M) dM

which appears in eq.(2) does not have a closed analytic solution. To overcome this problem authors of? proposed
the following parameterizations of the vector field:

f(x|c) ≡ Û(x) c

Û(x) ≡








u1(x)

. . .
u1(x)



 . . .




uN (x)

. . .
uN (x)









where {u1(x), . . . , uN (x)} is a set of suitable base functions. With this parameterization we assume that the
function f(x), which is nonlinear in respect of x, might be expressed as a weighted sum of nonlinear base
functions. Parameters c are the weights of this sum. Note that f(xk|c) might be highly non linear in x, and
we are only assuming linearity in respect of parameters.

In this way the likelihood function became a multivariate normal distribution in respect of c. Thus, for a
given D̂, taking the initial prior ppr(c) to be a multivariate normal distribution centered in some prior mean cpr

and with prior covariance Σ̂pr, the posterior ppost(c) is also Gaussian. So the algorithm for finding both c and
D̂ might be a two step optimization process which performs iteratively the following two operations: (i) given
c, compute the best choice of D̂; (ii) given D̂, compute the best choice of c. The details of the algorithm have
been given elsewhere? but a few comment will be made. The quantity to be maximized in respect of c, and D̂ if
the negative logarithm of the posterior is

SX (c, D̂) =
1
2
ρ(D̂)− cT w(D̂) +

1
2
cT Ξ(D̂)c. (9)



Figure 1. Synthetic data for one uncoupled FHN system. (a) x(t) and q(t), (b) limit cycles (solid line) and isoclines:
−x1(x1 − θ1)(x1 − 1) − q1 + η1 = 0 (dashed line); βx1 − γ1q1 = 0 (bold dashed line). Parameters are: γ1 = 0.0051051,
β = 0.0051, α1 = 0.2, η1 = 0.112, and d1 = 1× 10−5.

where the following definitions has been used

ρ(D̂) ≡ h
K−1∑

k=0

ẋT
k D̂−1 ẋk + K ln(det D̂), (10)

w(D̂) ≡ Σ̂−1
pr cpr + h

K−1∑

k=0

[
ÛT (x∗k) D̂−1 ẋk −

1
2

L∑

l=1

∂ul(x∗k)
∂xl

]
, (11)

Ξ(D̂) ≡ Σ̂−1
pr + h

K−1∑

k=0

ÛT (x∗k) D̂−1Û(x∗k) . (12)

where at each steps Ξ−1 is the new covariance matrix given D̂, and the next step parameter vector is c′ = Ξc,
given D̂; while, given c, the maximum of the negative logarithm of posterior in respect of D̂ is

D̂ =
h

K

K−1∑

k=0

[
ẋk − Ûkc

]T [
ẋk − Ûkc

]
. (13)

3. THEORY OF DECOUPLING OF A NUMBER OF FITZHUGH-NAGUMO
SYSTEMS MIXED BY MEASUREMENT MATRIX

In this section we will take into consideration the signal coming from a FitzHugh-Nagumo model. This is a
widely used model for the neuron dynamic2–5 and, in particular, for nerve fibres6 and heart tissues.7–9 It consist
of two coupled first order differential equation described by the variable x and q. x is the membrane potential,
w is a recovery variable, slower than x.5 A set of multiple neurons can be written as:

ẋj = −xj (xj − αj) (xj − 1)− qj + ηj + ξj , (14)
q̇j = −β qj + γj xj ,

〈ξj(t) ξi(t′)〉 = di j δ(t− t′), i, j = 1 : L.

j labels all the L neurons, and at the membrane potential a white Gaussian noise is present. Parameters ηj ,
αj , γj are possibly different for each neuron. In particular ηj has a special importance since it models the input
current at the membrane and it acts as a control parameter for the firing frequency, related to the information
transfer in physiological systems. It is particularly important in the view of the physiological applications to
decode this parameter.

Note that, in general, parameter β also has to be inferred. However, in what follows we will assume for the
sake of simplicity that it is a known constant for each neuron.



Figure 2. Model of measurements assumes that x1(t) and x2(t) are mixed with known matrix X as in (23). (a) x1(t)
(black solid line) and x2(t) (grey dotted line), (b) y1(t) (black solid line) and y2(t) (grey dotted line). Parameter as in
Table 4.1.

Note also that, in practice, the signal from different neurons are mixed by a measurement matrix X, so it
would be useful to have a technique to decode these parameter from a corresponding readout variable related to
the membrane potentials via the following expression:

yi = Xij xj (15)

Where yi represents the output of our signal, i.e. see Fig. (2). With this approach we have to find the basis
functions u(y1, . . . , yL) such that the systems

ẏi =
∑

j

ai juj(y1, . . . , yL)

represents the dynamics of measured variables corresponding to the underlying dynamics of actual variables
described by eq.(14) and measurement model given by (3).

First q has to be reconstructed, since it is not read directly. We solve equation eq.(14), that is:

qj(t) = γ

∫ t

0
dτ exp(−β (t− τ)) xj(τ) + exp(−βt)qj(0)

Here qj(0) is a set of initial coordinates that needs to be inferred along with the rest of parameters. We plug
this equation into eq.(14) and obtain:

ẋj(t) = −xj (xj − αj) (xj − 1) + ηj + dj − γ

∫ t

0
exp(−β (t− τ))xj(τ)dτ + exp(−βt)qj(0) . (16)

The function
∫ t
0 exp(−β (t − τ))xj(τ)dτ is defined over the time grid {t0, t1, . . . , tN}. After some algebraic

manipulations, using trapezoidal rule for the evaluation of the integral, it can be shows that
∫ tk

0
exp(−β (t− τ))xj(τ)dτ = h

N∑

n=0

xj(tn) exp (β(tn − tN ))− h

2
(xj(t0) exp(β(t0 − tN )) + xj(tN )) .

Substituting eq.(16) into eq.(15) we obtain finally the required system of equations in the form:

ẏj =
N∑

i=1

Aj i yi +
N∑

k1,k2=1

Bj k1 k2 yk1yk2 +
N∑

k1,k2,k3=1

Cj k1 k2 k3 yk1yk2yk3+

−
∫ t

t0

dτ
N∑

i,k=1

exp[−β (t− τ)]Γj
i kyk(τ)−

N∑

i=1

exp[−β t] q̃j + η̃j +
N∑

i=1

Dj iξi(t).

(17)



Here, use was made of the following definitions:

Aj k =
N∑

i=1

Xj i αi

(
X−1

)
i k

,

Bj k1 k2 =
N∑

i,k1,k2=1

Xj i (1 + αi)
(
X−1

)
i k1

(
X−1

)
i k2

Cj k1 k2 k3 =
N∑

i,k1,k2,k3=1

Xj i

(
X−1

)
i k1

(
X−1

)
i k2

(
X−1

)
i k3

,

Γj
i k = Xj i γi

(
X−1

)
i k

.

(18)

The modified noise intensities Dj for an auxiliary system (3) are expressed in terms of dj , and the modified
initial condition for q̃i are expressed in terms of qj as follows:

Dj =
N∑

i=1

Xj idi q̃j =
N∑

i=1

Xj iqi(0). (19)

The parameters η̃j that appear in eq.(17) are related to the original model parameters ηj , as follows:

η̃j =
N∑

i=1

Xj iηi. . (20)

From eq.(17), we can see that if the system’s dimension L increases, and if we cannot make any assumption on
the form of the coupling, the increase in the number of parameters is proportional to L3. In aprticular, when
L = 2, the following base functions have to be used to infer matrix elements of A, B,C, Γ,D, η̃:

u1 ≡ 1 u2 ≡ y1 u3 ≡ y2 u4 ≡ y2
1 u5 ≡ y2

2

u6 ≡ y1y2 u7 ≡ y3
1 u8 ≡ y2

1y2 u9 ≡ y1y
2
2 u10 ≡ y3

2

u11 ≡ h
k∑

l=0

y1(l) exp (β(tl − tk))− h

2
(y1(0) exp(β(t0 − tk)) + y1(k)) ,

u12 ≡ h
k∑

l=0

y2(l) exp (β(tl − tk))− h

2
(y2(0) exp(β(t0 − tk)) + y2(k))

u13 ≡ − exp(β(t0 − tk)) .

(21)

Thus the total number of parameters is 26 and the vector c as a function of the parameters’ matrix elements
takes the form

c = [η̃1, η̃2,−A11,−A21,−A12,−A22, . . .

B111, B211, (B112 + B121), . . .
(B212 + B221), B122, B222,−C1111,−C2111, . . . .

−(C1112 + C1121 + C1211),−(C2112 + C2121 + C2211), . . .
−(C1122 + C1221 + C1212),−(C2122 + C2221 + C2212), . . .
−C1222,−C2222, γ1, γ2, q̃1, q̃2] .

(22)

4. INFERENCE OF THE CONTROL PARAMETERS FOR TWO COUPLED FHN
SYSTEMS

In this section the inference algorithm described above will be tested using synthetically generated signal for the
system of two FHN oscillators. First, we will describe how the signal is generated and how the stream of data



is passed on to the inferring machinery; then tests of convergence will be carried out in the case of a stationary
dynamic; finally a demonstration and consideration of how the technique performs in the case of a non-stationary
dynamics will be presented.

4.1 Synthetic data and preliminary test
To test our inferential algorithm we generate 2 signals from a 2-dimensional FHN system as in eq.(14), keeping
all parameters fixed. To generate the stream of data, the stochastic differential equation has been integrated
accordingly to the Heun scheme.10 In Fig. (2) (a) a sample of data generated with coefficent as in Table (4.1) is
shown. The signals yi obtained multiplying the mixing matrix with the signals xi is the imput for the algorithm.

α1 = 0.2 η = 0.15
α2 = 0.2 η = 0.15
β1 = 0.0051 γ1 = 0.0051051
β2 = 0.0051 γ2 = 0.0051051
d11= 0.004 d12= 0.001
d22= 0.004 d21= 0.001

Table 1. Values of coefficients for the generated stationary signal

The measurement matrix has been taken in the following form:

X =
[
1 2
2 1

]
(23)

In this way we generate contiguously multiple blocks of points. Values of the control parameters η1 and η2

change step-wise at random from block to block and remain constant within each block. Other parameters of
the system remain constant all the time. The inference is performed through the following steps:

1. Use a non-informative prior for parameters with an infinitely large variance.

2. Compute the first block p1st block
post (M).

3. Reset the prior to an infinitely large multivariate gaussian distribution for each block of data.

In Figs.(3)(a) and (b) inferred values of the parameter ηi are compared with their actual values for five time
steps. The sampling rate was approximately 50 kHz, i.e. we use 20000 points to infer values of the model
parameters on one time step. As it is shown in the figure, the time interval between steps is approximately 5-10
periods of firing of action potential. The measured trajectories y1(t) and y2(t) are shown in the Fig. (3) (b) and
(e). In the Fig. (3) (c) and (f) we compare the reconstructed dynamic variable qi for each oscillator. In order to
obtain the unmeasured coordinate qi(t) the second line of eq.(14) has been integrated numerically using inferred
coefficients, and using the boundary condition qi(0) that can be derived from eq.(19):

qi(0) =
N∑

j=1

X−1
i j q̃j . (24)

4.2 Test of convergence
It is also advisable to check how the convergence depends on the total time of measurements of the time-series
data. To this end we generate synthetic time-series data keeping all coefficients constant and express he total
measurement time as the number of blocks. A ensemble of different sample signals (number of runs) is generated
for each value of the total measurement time and inference procedure is carried out independently for each run.
Statistical properties from the ensemble of inferred parameters computed in this way provide an example of the
convergence of coefficients ci as shown in Fig. (4). The number of runs to obtain the averaged convergence was
3000 for each size of the block of data. It can be seen from the figure that the time of convergence is larger



for the coefficients corresponding to higher powers of the dynamical variables in the equations. Convergence
of the diffusion coefficients is shown in Fig. (5). As it can be seen that the inferred parameters for diffusion
matrix D̂ are on average overestimated compared to the real ones. This behavior is rather simply explained:
the maximum of the likelihood in respect of D̂ is given by eq.(13). Nevertheless it holds for real coefficients c.
In our case the vector c is not exact, but it represents the maximum of the likelihood in respect of vector c, thus
it is a statistical quantity. Thus, the slight bias in the estimation of D̂ reflects the propagation of the uncertainly
in the inferred c. To avoid this bias one has to repeat calculations of D̂ and c in a loop until convergence is
reached as will be explained in details elsewhere.

The coefficients presented in Figs. (4) and (5) are the weight factors for the base functions of eq.(21). To
reconstruct the original coefficients, and to check the quality of our estimation, we recover coefficients (14) and
the elements of the diffusion matrix di using eqs.(20) that are reduced in our case to the following expressions:

A = X−1AX, (25)

Γ = X1 Γ̃X, (26)

D = X−1D̃(XT )−1, (27)

η = X−1η̃. (28)

Here A is a diagonal matrix with diagonal elements equal to α1 and α2, Γ is a diagonal matrix with diagonal
elements equal to γ1 and γ2. Since in our test α1 = α2, γ1 = γ2 and η1 = η2 we present the results of recovering of
the original coefficients only for the first equation. The results of the inference of the original equations obtained
from the inference of the mixed equations with the help of relations (28) are shown in Fig. (6). For the block of
data containing 8000 points, results of the inference are summarized in Table 2.

4.3 Parameters η

If we devote our attention only to the inference of parameters η1 and η2, namely if prior knowledge of all the
other parameters is given, clearly we need much less information (sample data) to achieve good estimations of ηi.
As has been done formerly, η1 and η2 change step-wise at random and remain constant between steps. However,
the time interval between steps is now 20 times smaller and is less then one period of firing of an action potential.

Figure 3. Inference of the model parameters of two uncoupled FHN systems mixed by the measurement matrix with
step-wise changes of η1 and η2. (a) Actual values of η1 are shown by solid lines in comparison with inferred values shown
by dotted lines. (b) Measured mixed values of coordinates y1(t) (solid line). (c) Mixed value of the generated coordinate
q1(t) is shown in comparison with its inferred value integrated from q̃i. Figures (d), (e), and (f) show the corresponding
result for the second system. The values of other parameters were α1 = α2 = 0.2, β = 0.0051051, γ1 = γ2 = 0.0051.



Figure 4. Convergence of some of the model parameters ci as a function of the length of the block of data. The sampling
rate is approximately 50 kHz. First point corresponds to the 1000 data points in one block. For each next point the
number of data points was increased by 1000. Vertical lines shows standard deviation of the inferred values of the model
coefficients. The horizontal dashed lines shows actual values of the model parameters. The values of other parameters
were α1 = α2 = 0.2, β = 0.0051051, γ1 = γ2 = 0.0051.

Figure 5. Convergence of the diffusion coefficients as a function of the length of the block of data. Parameters are the
same as in Fig. (4).

Other parameters of the system remain constant all the time. At each step we infer only parameters η1 and η2 of
the model assuming their initial values to be zero and their initial dispersion to be infinity. In Fig. (7) inferred
values of the parameter ηi are compared with their actual values for five time steps. The sampling rate was
approximately 50 kHz, i.e. we use 1000 points to infer values of the model parameters in each time step. The
measured trajectories y1(t) and y2(t) are shown in the Fig. (7) (b) and (e). The values of the real and inferred
coordinates qi(t) are compared in Fig. (7) (c) and (f).

The results obtained so far show a remarkably close correspondence between the real and inferred values, but
one can argue that this correspondence is due to the fact that real parameters ηi change stepwise but remain
constant during each block of inference. Therefore, in the following we will investigate the possibility of inference
in case of continuous smoothly-varying parameters η1 and η2 that have both periodic and random components.
Although the algorithm is the same, the data set now consists of a series of blocks 10000 points long each; i.e. we
have a few periods of firing per one block of inference. We also assume that all other parameters of the system
are known. The results of inference are shown in the Fig. (8). The results are very similar to those shown in
the Fig. (7) except that we now infer the average value of ηi per block. This result suggests that we can obtain
a better approximation of the actual values of η by shifting the initial time of each block and assuming that the
inferred value of ηi corresponds to the time at the middle point of the block.

It is clear that thanks to this “block by block” approach the quality of inference for smoothly-varying pa-
rameters seems to fulfill the researcher’s expectation; thus, to complete the scenario of the inference of multiple



Figure 6. Convergence of the original coefficients (a) η1, (b) α1, (c) γ1, and (d) d1 as functions of the time if inference
was conducted with a sampling rate of 55 kHz. Parameters are the same as in Fig. (4).

η1 α1 γ1 d1

0.112 0.2 0.0051 0.001
0.1245 0.2161 0.0055 0.0010
0.0097 0.0202 0.0003 0.0003

Table 2. Values of the original coefficients inferred using 8000 points measured with sampling rate 55 kHz obtained from
mixed measurements with the help of eqs. (28). The actual values (top row) are compared with the inferred values
(middle row), standard deviations are given in the bottom row.

parameters, we present the performances of the algorithm in case when all parameters need to be inferred.

Hence, in the next and last part no assumptions are made, nor prior knowledge of others parameters taken
as given, and η1 and η2 are varying with periodic and random components. The results for a block of data
containing 8000 points results of inference are summarized in Table 3. At each step of the algorithm we use the

c1 c2 c3 c4 c5 D11

0.1106 0.0607 -0.2000 0 0 0.0009
0.2084 0.2074 -0.2130 -0.0062 0.0130 0.0010

c7 c8 c9 c10 c11 D12

1.2000 0.8000 -1.6000 -1.6000 0.8000 0.0006
1.2174 0.9871 -1.5712 -2.0007 -1.0123 0.0006

c18 c19 c20 c21 c22 D22

0.6667 -0.2222 -0.5556 0.0051 0.7500 0.0009
1.5529 -0.3399 -0.7994 0.0049 0.7255 0.0010

Table 3. Values of some model coefficients inferred at the first step. The actual values (top row) are compared with the
inferred values (bottom row).

coefficients of the model inferred at the previous step to infer ηi parameters. We use a sampling rate of 55 kHz
and 15000 points per block of inference. The results are shown in Fig. (9). They are very similar to those shown
of Fig. (8) even though the values of the model coefficients are now known only approximately, thus confirming
on the efficacy of the technique for parameter-tracking purposes.

5. CONCLUSION
In this paper we have presented a new application of the Bayesian dynamical inference technique. To the
previously proposed method1 additional features have been added, namely we have taken into account the
variability of parameters of the model that has to be inferred. Here (a) driving parameters that are varying in
time have been infered in a dynamical system of coupled FHN oscillators with additive noise, and (b) the general
framework of application the Bayesian algorithm to a multiple FHN system has been presented.



Figure 7. Inference of η1 and η2 for two uncoupled FHN systems mixed by the measurement matrix. (a) The actual
values of η1, are shown by solid lines, are almost indistinguishable from the inferred values, shown by dotted lines. (b)
Measured mixed values of coordinates y1(t) (solid line). (c) Values of the coordinate q1(t) are shown in comparison with
its inferred value. Figures (d), (e), and (f) show the same results for the second system. The values of other parameters
where α1 = α2 = 0.2, β = 0.0051051, γ1 = γ2 = 0.0051.

Figure 8. Inference of smoothly-varying η1 and η2 that have both periodic and random components for two uncoupled
FHN systems. (a) Actual values of η1 are shown by black solid lines in comparison with inferred values shown by gray
dotted lines. (b) Measured mixed values of coordinates y1(t) (solid line). (c) Values of the coordinate q1(t) (solid line) is
almost indistinguishable from the inferred value (gray dotted line). Figures (d), (e), and (f) show the same results for the
second system. The values of other parameters where α1 = α2 = 0.2, β = 0.0051051, γ1 = γ2 = 0.0051.

As readout variables we considered a vector formed from a linear combination of the system dynamical
variables mixed through a measurement matrix. The multiple FHN system here is therefore taken in general
form. This allows us to demonstrate that it is possible to recover the real system parameters and the diffusion
coefficients.

As a result we have shown that new algorithm is advantiously fast in detecting dynamic controlling parameters,
and it appears to be a desirable and flexible instrument in analysing the data, because it maximises the use of



Figure 9. Inference of smoothly-varying η1 and η2 that have both periodic and random components for two uncoupled
FHN systems using model coefficients inferred at the first step. (a) Actual values of η1 are shown by black solid lines in
comparison with inferred values shown by gray dotted lines. (b) Measured mixed values of coordinates y1(t) (solid line).
(c) Values of the coordinate q1(t) are almost indistinguishable from the inferred value (gray dotted line). Figures (d), (e),
and (f) show the same results for the second system. The values of other parameters where α1 = α2 = 0.2, β = 0.0051051,
γ1 = γ2 = 0.0051.

the available information. Indeed, we have demonstrated it by performing tests where stepwise changes of the
dynamics were read under several hypotheses about the factual external knowledge.

Due to these properties our inferrence algorithm is also able to follow continuous changes of a system’s param-
eters. In fact it makes it possible to refresh the inferred system’s state instantaneously (providing opportunity
for the model to reflect parameter changes on a continuous time basis).
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